摘 要:图像识别技术是人工智能领域发展最迅速的技术之一,可以根据观测到的图像,分辨并提取其中的信息,以适应人们的各项复杂需求。本文以城市空间形态为主要研究对象,利用GIS(地理信息系统)与图像识别技术,以地球图像信息为载体,分别用无监督识别和半监督识别的方法,实现了对城市多种空间形态的识别与自动分类,并对无监督与半监督的分类结果进行了比较分析。
关键词:图像识别技术;地理信息系统;无监督识别;半监督识别;城市空间形态
Urban Spatial Morphology Recognition Based on GIS and Image Recognition
WANG Luying
(College of Architecture, Harbin Institute of Technology, Harbin, 150001, China)
Abstract: Image recognition technology is one of the fastest-developed technologies in the field of artificial intelligence. It can distinguish and extract information based on observed images to meet people's complex needs. This paper takes urban spatial form as the main research object, and uses GIS (geographic information system) and image recognition technology to use the image information of the earth as the carrier, and uses unsupervised recognition and semi-supervised recognition methods to realize various spatial forms of the city. Identification and automatic classification, and comparative analysis of unsupervised and semi-supervised classification results.
Keywords: image recognition technology, geographic information system, unsupervised recognition, semi-supervised recognition, urban space form
在人工智能领域飞速发展的今天,图像识别技术作为其中重要且技术较为成熟的一部分,已经可以跨专业应用在各个领域,目前已广泛应用于如生物医学、卫星遥感、机器人视觉、货物检测、目标跟踪、自动驾驶等领域中。主要的识别技术包括指纹识别、人脸识别、文字识别、医疗影像识别等[1]。但是在建筑学、城市规划、景观规划等设计类专业中也逐步需要用到图像识别技术来帮助识别空间、物体、环境以辅助设计及研究工作。城市范畴的图像识别工作一般是基于GIS技术实现的,GIS是一种使用计算机软件来处理并研究空间数据的技术。因此,本文以地理信息和空间数据为分析基础,结合图像识别技术中无监督式和半监督式两种方法,实现了对哈尔滨主城区的城市空间进行自动识别与分类,未来可用于分析并提取城市空间形态以指导规划设计。
1 地理信息数据的采集与预处理
1.1 地理信息数据的采集
地理信息数据源指建立GIS的地理数据库所需的各种数据的来源,主要包括地图、遥感图像、文本资料、统计资料、实测数据、多媒体数据、已有系统的数据等。其中遥感技术是更新GIS数据库的重要方法,得到的数据源面积更大、更动态、更接近实时数据。且遥感数据含有丰富的资源与环境信息,可以结合图像识别技术获得更多有意义的信息。
本次研究选择了来自美国的Landsat卫星数据库中的遥感影像数据作为数据源。LANDSAT是美国NASA的陆地卫星计划(1975年前称“地球资源技术卫星-ERTS”),从1972年开始发射第一颗卫星LANDSAT-1,已发射8颗。最新的Landsat8于2013年2月11号成功发射,携带有两个主要荷载:OLI和TIRS。其中OLI(全称:Operational Land Imager ,陆地成像仪)由卡罗拉多州的鲍尔航天技术公司研制;TIRS(全称:Thermal Infrared Sensor,热红外传感器),由NASA的戈达德太空飞行中心研制。该卫星可以收集到的数据特性更多,且包含11个波段,最大空间分辨率能达到15m,所以选择了Landsat8遥感影像数据来研究。下面表1是Landsat 8的11个波段设计及各波段主要作用。在Landsat官网上下载到遥感影像数据后,即可以使用SCP插件导入到GIS中,并且进行分类识别。
1.2 地理信息数据的预处理
获取到的遥感影像为多个方形拼合而成,因此用SCP插件导入Landsat数据文件后,需要根据待分析的城市行政区范围地图裁剪landsat文件,得到用于分类识别的文件格式。得到的文件视觉上为黑白灰颜色分布的图像,但是实际上数据信息都隐藏在不同的波段中,因此需要提取11个波段系列(band set)的栅格图。根据11个波段的不同作用与图像信息,选择不同波段组合,可以得到不同功能作用的色彩显示模式。例如下图图1为真彩的显示模式为4-3-2三个波段按顺序叠加而成的,类似与平时看到的卫星地图的颜色。改变波段组合顺序,还可以显示其他多种颜色模式,查看城市不同空间要素的区分。例如,波段组合6-5-4为植被分析的模式,如下图图2所示。
相关阅读
赞助商广告